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Abstract

A number of reasoning problems involving the ma-
nipulation of temporal information can be viewed
as implicitly inducing an ordering of decisions in-
volving time (associated with durations or order-
ings of events) on the basis of preferences. For
example, a pair of events might be constrained to
occur in a certain order, and, in addition, it might
be preferable that the delay between them be as
large, or as small, as possible. This paper explores
problems in which a set of temporal constraints is
specified, each with preference criteria for mak-
ing local decisions about the events involved in the
constraint. A reasoner must infer a complete so-
lution to the problem such that, to the extent pos-
sible, these local preferences are met in the best
way. Constraint-based temporal reasoning is gener-
alized to allow for reasoning about temporal prefer-
ences, and the complexity of the resulting formal-
ism is examined. While in general such problems
are NP-complete, some restrictions on the shape of
the preference functions, and on the structure of the
set of preference values, can be enforced to achieve
tractability. In these cases, a generalization of a
single-source shortest path algorithm can be used
to compute a globally preferred solution in polyno-
mial time.

1 Introduction and Motivation
Some real world temporal reasoning problems can naturally
be viewed as involving preferences associated with decisions
such as how long a single activity should last, when it should
occur, or how it should be ordered with respect to other ac-
tivities. For example, an antenna on an earth orbiting satellite
such as Landsat 7 must be slewed so that it is pointing at a
ground station in order for recorded science data to be down-
linked to earth. Assume that as part of the daily Landsat 7
scheduling activity a windowW = [s; e] is identified within
which a slewing activity to one of the ground stations for one
of the antennae can begin, and thus there are choices for as-
signing the start time for this activity. Antenna slewing on
Landsat 7 has been shown to cause a vibration to the satellite,
which in turn affects the quality of the observation taken by

the imaging instrument if the instrument is in use during slew-
ing. Consequently, it is preferable for the slewing activity not
to overlap any scanning activity, although because the detri-
mental effect on image quality occurs only intermittently, this
disjointness is best not expressed as a hard constraint. Rather,
the constraint is better expressed as follows: if there are any
start timest within W such that no scanning activity occurs
during the slewing activity starting att, thent is to be pre-
ferred. Of course, the cascading effects of the decision to
assignt on the sequencing of other satellite activities must be
taken into account as well. For example, the selection oft,
rather than some earlier start time withinW , might result in a
smaller overall contact period between the ground station and
satellite, which in turn might limit the amount of data that
can be downlinked during this period. This may conflict with
the preference for maintaining maximal contact times with
ground stations.

Reasoning simultaneously with hard temporal constraints
and preferences, as illustrated in the example just given, is
the subject of this paper. The overall objective is to develop
a system that will generate solutions to temporal reasoning
problems that areglobally preferredin the sense that the so-
lutions simultaneously meet, to the best extent possible, all
the local preference criteria expressed in the problem.

In what follows a formalism is described for reasoning
about temporal preferences. This formalism is based on a
generalization of the Temporal Constraint Satisfaction Prob-
lem (TCSP) framework [Dechteret al, 1991], with the addi-
tion of a mechanism for specifying preferences, based on the
semiring-based soft constraint formalism [Bistarelliet. al.,
1997] . The result is a framework for defining problems in-
volving soft temporal constraints. The resulting formulation,
called Temporal Constraint Satisfaction Problems with Pref-
erences (TCSPPs) is introduced in Section 2. A sub-class
of TCSPPs in which each constraint involves only a single
interval, called Simple Temporal Problems with Preferences
(STPPs), is also defined. In Section 3, we demonstrate the
hardness of solving general TCSPPs and STPPs, and pinpoint
one source of the hardness to preference functions whose
“better” values may form a non-convex set. Restricting the
class of admissible preference functions to those with convex
intervals of “better” values is consequently shown to result
in a tractable framework for solving STPPs. In section 4, an
algorithm is introduced, based on a simple generalization of



the single source shortest path algorithm, for finding globally
best solutions to STPPs with restricted preference functions.
In section 5, the work presented here is compared to other
approaches and results.

2 Temporal Constraint Problems with
Preferences

The proposed framework is based on a simple merger of two
existing formalisms: Temporal Constraint Satisfaction Prob-
lems (TCSPs) [Dechteret. al., 1991], and soft constraints
based on semirings [Bistarelliet. al., 1997]1. The result of
the merger is a class of problems called Temporal Constraint
Satisfaction problems with preferences (TCSPPs). In a TC-
SPP, asoft temporal constraintis represented by a pair con-
sisting of a set of disjoint intervals and a preference function:
hI = f[a1; b1]; : : : ; [an; bn]g; fi, wheref : I ! A, andA is
a set of preference values.

Examples of preference functions involving time are:

� min-delay: any function in which smaller distances are
preferred, that is, the delay of the second event w.r.t. the
first one is minimized.

� max-delay: assigning higher preference values to larger
distances;

� close to k: assign higher values to distances which are
closer tok; in this way, we specify that the distance be-
tween the two events must be as close as possible tok.

As with classical TCSPs, the interval component of a soft
temporal constraint depicts restrictions either on the start
times of events (in which case they are unary), or on the dis-
tance between pairs of distinct events (in which case they are
binary). For example, a unary constraint over a variableX
representing an event, restricts the domain ofX , representing
its possible times of occurrence; then the interval constraint
is shorthand for(a1 � X � b1) _ : : : _ (an � X � bn).
A binary constraint overX andY , restricts the values of the
distanceY �X , in which case the constraint can be expressed
as(a1 � Y �X � b1) _ : : : _ (an � Y �X � bn). A uni-
form, binary representation of all the constraints results from
introducing a variableX0 for the beginning of time, and re-
casting unary constraints as binary constraints involving the
distanceX �X0.

An interesting special case occurs when each constraint of
a TCSPP contains a single interval. We call such problems
Simple Temporal Problems with Preferences(STPPs), due to
the fact that they generalize STPs [Dechteret. al., 1991].
This case is interesting because STPs are polynomially solv-
able, while general TCSPs are NP-complete, and the effect of
adding preferences to STPs is not immediately obvious. The
next section discusses these issues in more depth.

A solutionto a TCSPP is a complete assignment to all the
variables that satisfies the distance constraints. Each solu-
tion has aglobal preference value, obtained by combining the

1Semiring-based soft constraints is one of a number of for-
malisms for soft constraints, but it has been shown to generalize
many of the others, e.g., [Freuder and Wallace, 1992] and [Schiex
et. al., 1995].

local preference values found in the constraints. To formal-
ize the process of combining local preferences into a global
preference, and comparing solutions, we impose a semiring
structure onto the TCSPP framework.

A semiringis a tuplehA;+;�;0;1i such that

� A is a set and0;1 2 A;

� +, the additive operation, is commutative, associative
and0 is its unit element;

� �, the multiplicative operation, is associative, distributes
over+, 1 is its unit element and0 is its absorbing ele-
ment.

A c-semiringis a semiring in which+ is idempotent (i.e.,
a + a = a; a 2 A), 1 is its absorbing element, and� is
commutative.

C-semirings allow for a partial order relation�S overA to
be defined asa �S b iff a+ b = b. Informally,�S gives us a
way to compare tuples of values and constraints, anda �S b
can be readb is better than a. Moreover:+ and� are mono-
tone on�S; 0 is its minimum and1 its maximum;hA;�Si is
a complete lattice and, for alla; b 2 A, a + b = lub(a; b)
(where lub=least upper bound). If� is idempotent, then
hA;�Si is a complete distributive lattice and� is its great-
est lower bound (glb). In our main results, we will assume
� is idempotent and also restrict�S to be a total order on
the elements ofA. In this casea + b = max(a; b) and
a� b = min(a; b).

Given a choice of semiring with a set of valuesA, each
preference functionf associated with a soft constrainthI; fi
takes an element fromI and returns an element ofA. The
semiring operations allow for complete solutions to be evalu-
ated in terms of the preference values assigned locally. More
precisely, given a solutiont in a TCSPP with associated
semiringhA;+;�;0;1i, let Tij = hIi;j ; fi;ji be a soft con-
straint over variablesXi; Xj and(vi; vj) be the projection of
t over the values assigned to variablesXi andXj (abbrevi-
ated as(vi; vj) = t#Xi;Xj

). Then, the corresponding prefer-
ence value given byfij is fij(vj � vi), wherevj � vi 2 Ii;j .
Finally, whereF = fx1; : : : ; xkg is a set, and� is the
multiplicative operator on the semiring, let�F abbreviate
x1� : : :�xk. Then the global preference value oft, val(t), is
defined to beval(t) = �ffij(vj � vi) j (vi; vj) = t#Xi;Xj

g.
The optimal solutions of a TCSPP are those solutions

which have the best preference value, where “best” is
determined by the ordering of the values in the semir-
ing. For example, consider the semiringSfuzzy =
h[0; 1];max;min; 0; 1i, used for fuzzy constraint solving
[Schiex, 1995]. The preference value of a solution will
be the minimum of all the preference values associated
with the distances selected by this solution in all con-
straints, and the best solutions will be those with the max-
imal value. Another example is the semiringScsp =
hffalse; trueg;_;^; false; truei, which is related to solv-
ing classical constraint problems [Mackworth, 1992]. Here
there are only two preference values:true andfalse, the pref-
erence value of a complete solution will be determined by the
logicalandof all the local preferences, and the best solutions
will be those with preference valuetrue (sincetrue is better



thanfalse in the order induced by logical or). This semiring
thus recasts the classical TCSP framework into a TCSPP.

Given a constraint network, it is often useful to find the
corresponding minimal network in which the constraints are
as explicit as possible. This task is normally performed by
enforcing various levels of local consistency. For TCSPPs, in
particular, we can define a notion ofpath consistency. Given
two soft constraints,hI1; f1i andhI2; f2i, and a semiringS,
we define:

� theintersectionof two soft constraintsT1 = hI1; f1i and
T2 = hI2; f2i, written T1 �S T2, as the soft constraint
hI1 � I2; fi, where

– I1�I2 returns the pairwise intersection of intervals
in I1 andI2, and

– f(a) = f1(a)� f2(a) for all a 2 I1 � I2;

� the compositionof two soft constraintsT1 = hI1; f1i
andT2 = hI2; f2i, writtenT1
ST2, is the soft constraint
T = hI1 
 I2; fi, where

– r 2 I1
I2 if and only if there exists a valuet1 2 I1
andt2 2 I2 such thatr = t1 + t2, and

– f(a) =
P
ff1(a1) � f2(a2) j a = a1 + a2; a1 2

I1; a2 2 I2g, where
P

is the generalization of+
over sets.

A path-inducedconstraint on variablesXi and Xj is
R
path

ij
= �S8k(Tik 
 Tkj), i.e., the result of performing

�S on each way of composing paths of size two between
i and j. A constraintTij is path-consistentif and only if
Tij � R

path

ij
, i.e.,Tij is at least as strict asRpath

ij
. A TCSPP

is path-consistent if and only if all its constraints are path-
consistent.

If the multiplicative operation of the semiring is idem-
potent, then it is easy to prove that applying the operation
Tij := Tij �S (Tik
S Tkj) to any constraintTij of a TCSPP
returns an equivalent TCSPP. Moreover, under the same con-
dition, applying this operation to a set of constraints returns
a final TCSPP which is always the same independently of the
order of application2. Thus any TCSPP can be transformed
into an equivalent path-consistent TCSPP by applying the op-
erationTij := Tij � (Tik 
 Tkj) to all constraintsTij until
no change occurs in any constraint. This algorithm, which
we call Path, is proven to be polynomial for TCSPs (that is,
TCSPPs with the semiringScsp): its complexity isO(n3R3),
wheren is the number of variables andR is the range of the
constraints [Dechteret. al., 1991].

General TCSPPs over the semiringScsp are NP-complete;
thus applying Path is insufficient to solve them. On the other
hand, with STPPs over the same semiring that coincide with
STPs, applying Path is sufficient to solve them. In the re-
maining sections, we prove complexity results for both gen-
eral TCSPPs and STPPs, and also of some subclasses of prob-
lems identified by specific semirings, or preference functions
with a certain shape.

2These properties are trivial extensions of corresponding proper-
ties for classical CSPs, proved in [Bistarellli,et. al., 1997.]

3 Solving TCSPPs and STPPs is NP-Complete
As noted above, solving TCSPs is NP-Complete. Since the
addition of preference functions can only make the problem
of finding the optimal solutions more complex, it is obvious
that TCSPPs are at least NP-Complete as well.

We turn our attention to the complexity of general STPPs.
We recall that STPs are polynomially solvable, thus one
might speculate that the same is true for STPPs. However,
it is possible to show that in general, STPPs fall into the class
of NP-Complete problems.

Theorem 1 (complexity of STPPs)General STPPs are NP-
complete problems.

Proof:
First, we prove that STPPs belong to NP. Given an instance

of the feasibility version of the problem, in which we wish to
determine whether there is a solution to the STTP with global
preference value� k, for somek, we use as a certificate the
set of times assigned to each event. The verification algorithm
“chops” the set of preference values of each local preference
function atk. The result of a chop, for each constraint, is a
set of intervals of temporal values whose preference values
are greater thank. The remainder of the verification process
reduces to the problem of verifying General Temporal CSPs
(TCSP), which is done by non-deterministically choosing an
interval on each edge of the TCSP, and solving the result-
ing STP, which can be done in polynomial time. Therefore,
STTPs belong to NP.

To prove hardness we reduce an arbitrary TCSP to an
STPP. Thus, consider any TCSP, and take any of its con-
straints, sayI = f[a1; b1]; : : : ; [an; bn]g. We will now
obtain a corresponding soft temporal constraint containing
just one interval (thus belonging to an STPP). The semiring
that we will use for the resulting STPP is the classical one:
Scsp = hffalse; trueg;_;^; false; truei. Thus the only
two allowed preference values are false and true (or 0 and
1). Assuming that the intervals inI are ordered such that
ai � ai+1 for i 2 f1; : : : ; n � 1g, the interval of the soft
constraint is just[a1; bn]. The preference function will give
value 1 to values inI and 0 to the others. Thus we have ob-
tained an STPP whose set of solutions with value1 (which are
the optimal solutions, since0 �S 1 in the chosen semiring)
coincides with the set of solutions of the given TCSP. Since
finding the set of solutions of a TCSP is NP-hard, it follows
that the problem of finding the set of optimal solutions to an
STPP is NP-hard.2

4 Linear and Semi-Convex Preference
Functions

The hardness result for STPPs derives either from the nature
of the semiring or the shape of the preference functions. In
this section, we identify classes of preference functions which
define tractable subclasses of STPPs.

When the preference functions of an STPP are linear, and
the semiring chosen is such that its two operations maintain
such linearity when applied to the initial preference functions,
the given STPP can be written as a linear programming prob-
lem, solving which is tractable [Cormenet. al., 1990]. Thus,
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Figure 1:Examples of semi-convex functions (a)-(f) and non-semi-
convex functions (g)-(i)

consider any given TCSPP. For any pair of variablesX and
Y , take each interval for the constraint overX andY , say
[a; b], with associated linear preference functionf . The in-
formation given by each of such intervals can be represented
by the following inequalities and equation:X � Y � b,
Y � X � �a, andfX;Y = c1(X � Y ) + c2. Then if we
choose the fuzzy semiringh[0; 1];max;min; 0; 1i, the global
preference valueV will satisfy the inequalityV � fX;Y for
each preference functionfX;Y defined in the problem, and
the objective ismax(V ). If instead we choose the semir-
ing hR;min;+;1; 0i, where the objective is to minimize the
sum of the preference levels, we haveV = f1+ : : :+ fn and
the objective ismin(V ) 3. In both cases the resulting set of
formulas constitutes a linear programming problem.

Linear preference functions are expressive enough for
many cases, but there are also several situations in which we
need preference functions which are not linear. A typical ex-
ample arises when we want to state that the distance between
two variables must be as close as possible to a single value.
Unless this value is one of the extremes of the interval, the
preference function is convex, but not linear. Another case is
one in which preferred values are as close as possible to a sin-
gle distance value, but in which there are some subintervals
where all values have the same preference. In this case, the
preference criteria define astep function, which is not convex.

A class of functions which includes linear, convex, and
also some step functions will be calledsemi-convex functions.
Semi-Convex functions have the property that if one draws
a horizontal line anywhere in the Cartesian plane defined by
the function, the set ofX such thatf(X) is not below the line
forms an interval. Figure 1 shows examples of semi-convex
and non-semi-convex functions.

More formally, asemi-convex functionis one such that, for
all Y , the setfX such thatf(X) � Y g forms an interval. It
is easy to see that semi-convex functions include linear ones,
as well as convex and some step functions. For example, the
close to kcriteria cannot be coded into a linear preference
function, but it can be specified by a semi-convex preference
function, which could bef(x) = x for x � k andf(x) =
2k � x for x > k.

3In this context, the “+” is to be interpreted as the arithmetic
operation, not the additive operation of the semiring.

Semi-Convex functions are closed under the operations of
intersection and composition defined in Section 2, when cer-
tain semirings are chosen. For example, this happens with the
fuzzy semiring, where the intersection performs themin, and
composition performs themaxoperation. The closure proofs
follow.

Theorem 2 (closure under intersection)The property of
functions being semi-convex is preserved under intersection.
That is, given a totally-ordered semiring with an idempotent
multiplicative operation� and binary additive operation+
(or
P

over an arbitrary set of elements), letf1 and f2 be
semi-convex functions which return values over the semiring.
Letf be defined asf(a) = f1(a)�f2(a), where� is the mul-
tiplicative operation of the semiring. Thenf is a semi-convex
function as well.

Proof: From the definition of semi-convex func-
tions, it suffices to prove that, for any giveny, the set
S = fx : f(x) � yg identifies an interval. IfS is empty, then
it identifies the empty interval. In the following we assumeS
to be not empty.

fx : f(x) � yg = fx : f1(x) � f2(x) � yg
= fx : min(f1(x); f2(x)) � yg

(� is a lower bound operator since it is assumed to be
idempotent)

= fx : f1(x) � y ^ f2(x) � yg
= fx : x 2 [a1; b1] ^ x 2 [a2; b2]g

(since each off1 andf2 is semi-convex)
= [max(a1; a2);min(b1; b2)]

2

Theorem 3 (closure under composition)The property of
functions being semi-convex is preserved under composition.
That is, given a totally-ordered semiring with an idempotent
multiplicative operation� and binary additive operation+
(or
P

over an arbitrary set of elements), letf1 and f2 be
semi-convex functions which return values over the semiring.
Definef as f(a) =

P
b+c=a

(f1(b) � f2(c)). Thenf is a
semi-convex function as well.

Proof: Again, from the definition of semi-convex func-
tions, it suffices to prove that, for any giveny, the set
S = fx : f(x) � yg identifies an interval. IfS is empty, then
it identifies the empty interval. In the following we assumeS
to be not empty.

fx : f(x) � yg
= fx :

P
u+v=x

(f1(u)� f2(v)) � yg

= fx : maxu+v=x(f1(u)� f2(v)) � yg
(since+ is an upper bound operator)

= fx : f1(u)� f2(v) � y for someu andv
such thatx = u+ vg

= fx : min(f1(u); f2(v)) � y for someu andv
such thatx = u+ vg

(� is a lower bound operator since it is assumed to be
idempotent)

= fx : f1(u) � y ^ f2(v) � y;



for someu+ v = xg
= fx : u 2 [a1; b1] ^ v 2 [a2; b2];

for someu+ v = x and somea1; b1; a2; b2g
(since each off1 andf2 is semi-convex)

= fx : x 2 [a1 + a2; b1 + b2]g
= [a1 + a2; b1 + b2]

2

That closure of the set of semi-convex functions requires
a total order and idempotence of the� operator is demon-
strated by the following example. In what follows we assume
monotonicity of the� operator. Leta andb be preference
values witha 6< b, b 6< a, a � b < a, anda � b < b.
Supposex1 andx2 are real numbers withx1 < x2. Define
g(x) = 1 for x < x1 andg(x) = a otherwise. Also define
h(x) = b for x < x2 andh(x) = 1 otherwise. Clearly,g
andh are semi-convex functions. Definef = g � h. Note
thatf(x) = b for x < x1, f(x) = a � b for x1 � x < x2
andf(x) = a for x � x2. Sincefxjf(x) 6< ag includes all
values except wherex1 � x < x2, f is not semi-convex.

Now consider the situation where the partial order is not
total. Then there are distinct incomparable valuesa andb that
satisfy the condition of the example. We conclude the order
must be total. Next consider the case in which idempotence
is not satisfied. Then there is a preference valuec such that
c� c 6= c. It follows thatc� c < c. In this case, settinga =
b = c satisfies the condition of the example. We conclude
that idempotence is also required.

The results in this section imply that applying the Path al-
gorithm to an STPP with only semi-convex preference func-
tions, and whose underlying semiring contains a multiplica-
tive operation that is idempotent, and whose values are to-
tally ordered, will result in a network whose induced soft con-
straints also contain semi-convex preference functions. These
results will be applied in the next section.

5 Solving STPPs with Semi-Convex Functions
is Tractable

We will now prove that STPPs with semi-convex preference
functions and an underlying semiring with an idempotent
multiplicative operation can be solved tractably.

First, we describe a way of transforming an arbitrary STPP
with semi-convex preference functions into a STP. Given an
STPP and an underlying semiring withA the set of prefer-
ence values, lety 2 A andhI; fi be a soft constraint defined
on variablesXi; Xj in the STPP, wheref is semi-convex.
Consider the interval defined byfx : x 2 I ^ f(x) � yg
(becausef is semi-convex, this set defines an interval for
any choice ofy). Let this interval define a constraint on the
same pairXi; Xj . Performing this transformation on each
soft constraint in the original STPP results in an STP, which
we refer to asSTPy. (Notice that not every choice ofy will
yield an STP that is solvable.) Letopt be the highest prefer-
ence value (in the ordering induced by the semiring) such that
STPopt has a solution. We will now prove that the solutions
of STPopt are the optimal solutions of the given STPP.

Theorem 4 Consider any STPP with semi-convex preference
functions over a totally-ordered semiring with� idempotent.

Takeopt as the highesty such thatSTPy has a solution. Then
the solutions ofSTPopt are the optimal solutions of the STPP.

Proof: First we prove that every solution ofSTPopt is an op-
timal solution of STPP. Take any solution ofSTPopt, sayt.
This instantiationt, in the original STPP, has valueval(t) =
f1(t1)� :::�fn(tn), whereti is the distancevj�vi for an as-
signment to the variablesXi; Xj , (vi; vj) = t #Xi;Xj

, andfi
is the preference function associated with the soft constraint
hIi; fii, with vj � vi 2 Ii.

Now assume for the purpose of contradiction thatt is not
optimal in STPP. That is, there is another instantiationt0 such
thatval(t0) > val(t). Sinceval(t0) = f1(t

0
1
)� :::� fn(t

0
n
),

by monotonicity of the�, we can haveval(t0) > val(t) only
if each of thefi(t0i) is greater than the correspondingfi(ti).
But this means that we can take the smallest such valuefi(t

0
i
),

call it w0, and constructSTPw0 . It is easy to see thatSTPw0

has at least one solution,t0, thereforeopt is not the highest
value ofy, contradicting our assumption.

Next we prove that every optimal solution of the STPP is a
solution ofSTPopt. Take anyt optimal for STPP, and assume
it is not a solution ofSTPopt. This means that, for some
constraint,f(ti) < opt. Therefore, if we computeval(t) in
STPP, we have thatval(t) < opt. Then take any solution
t0 of STPopt (there are some, by construction ofSTPopt).
If we computeval(t0) in STPP, since� = glb (we assume
� idempotent), we have thatval(t0) � opt, thust was not
optimal as initially assumed.2

This result implies that finding an optimal solution of the
given STPP with semi-convex preference functions reduces to
a two-step search process consisting of iteratively choosing a
w, then solvingSTPw, until STPopt is found. Under certain
conditions, both phases can be performed in polynomial time,
and hence the entire process can be tractable.

The first phase can be conducted naively by trying every
possible “chop” pointy and checking whetherSTPy has a
solution. A binary search is also possible. Under certain con-
ditions, it is possible to see that the number of chop points is
also polynomial, namely:

� if the semiring has a finite number of elements, which
is at most exponential in the numbern of variables of
the given STPP, then a polynomial number of checks is
enough using binary search.

� if the semiring has a countably infinite number of ele-
ments, and the preference functions never go to infinity,
then let l be the highest preference level given by the
functions. If the number of values not abovel is at most
exponential inn, then again we can findopt in a poly-
nomial number of steps.

The second phase, solving the inducedSTPy, can be per-
formed by transforming the graph associated with this STP
into a distance graph, then solving two single-source shortest
path problems on the distance graph [Dechteret. al., 1991].
If the problem has a solution, then for each event it is possi-
ble to arbitrarily pick a time within its time bounds, and find
corresponding times for the other events such that the set of
times for all the events satisfy the interval constraints. The
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complexity of this phase isO(en) (using the Bellman-Ford
algorithm [Cormenet. al., 1990]).

The main result of this discussion is that, while general TC-
SPPs are NP-Complete, there are sub-classes of TCSPP prob-
lems which are polynomially solvable. Important sources of
tractability include the shape of the temporal preference func-
tions, and the choice of the underlying semiring for construct-
ing and comparing preference values.

Despite this encouraging theoretical result, the extent to
which real world preferences conform to the conditions nec-
essary to utilize the result is not clear. To illustrate this, con-
sider again the motivating example at the outset. As illus-
trated in Figure 2, suppose an imaging event is constrained to
occur during[B;C], and that the interval[A;D] is the inter-
val during which a slewing event can start to occur. Assuming
the soft constraint that prefers no overlap between the two oc-
currences, the preference values for the slewing can be visu-
alized as the function pictured below the interval, a function
that is not semi-convex. A semi-convex preference function
would result by squeezing one or the other of the endpoints of
the possible slewing times far enough that the interval would
no longer contain the imaging time. For example, removing
the initial segment[A;B] from the interval of slewing times
would result in a semi-convex preference function. Dealing
with the general case in which preference functions are not
semi-convex is a topic of future work.

6 Related work
The merging of temporal CSPs with soft constraints was first
proposed in [Morris and Khatib, 2000], where it was used
within a framework for reasoning about recurring events. The
framework proposed in [Rabideauet. al., 2000] contains a
representation of local preferences that is similar to the one
proposed here, but uses local search, rather than constraint
propagation, as the primary mechanism for finding good com-
plete solutions, and no guarantee of optimality can be demon-
strated.

Finally, the property that characterizes semi-convex pref-
erence functions, viz., the convexity of the interval above any
horizontal line drawn in the Cartesian plane around the func-
tion, is reminiscent of the notion of row-convexity, used in
characterizing constraint networks whose global consistency,
and hence tractability in solving, can be determined by apply-
ing local (path) consistency [Van Beek and Dechter, 1995].
There are a number of ways to view this connection. One
way is to note that the row convex condition for the 0-1 matrix
representation of binary constraints prohibits a row in which
a sequence of ones is interrupted by one or more zeros. Re-
placing the ones in the matrix by the preference value for that

pair of domain elements, one can generalize the definition of
row convexity to prohibit rows in which the preference values
decrease then increase. This is the intuitive idea underlying
the behavior of semi-convex preference functions.

7 Summary
We have defined a formalism for characterizing problems in-
volving temporal constraints over the distances and duration
of certain events, as well as preferences over such distances.
This formalism merges two existing frameworks, temporal
CSPs and soft constraints, and inherits from them their gen-
erality, and also allows for a rigorous examination of compu-
tational properties that result from the merger.
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